PMF_darcylaw_re(): Reynolds number of a porous media flow

About:
Calculate the Reynolds number of a porous media flow.
Porous media grain diameter :
\begin{equation} d = \sqrt{\frac{k}{n}} \end{equation}
Reynolds number: \begin{equation} Re = \frac{q \times d}{\mu} \end{equation}

 Where,



  • $q$, specific discharge » PMF_darcylaw_q() - $\frac{m}{s}$;
  • $\mu$, dynamic viscosity » WATER_viscosity_dvisc() , $Pa \times s$.
  • $k$, intrinsic permeability, $m^2$;
  • $n$, media porosity, $0...1$.


  • Module: PorousMediaFlow
    Function: PMF_darcylaw_re(dh,dx,t,s,k,n)
    Parameters:
    • dh, variation of water level, m;
    • dx, distance between water levels, g/kg;
    • t , water temperature, oC;
    • s, water salinity, g/kg;
    • k, intrinsic permeability, m2;
    • n, media porosity,0...1.
    Sample code:
    dh = -1.0 # (m)
    dx = 100 # (m)
    k = 10**(-10) #(m2)
    n = 0.35
    t = 10 #(.oC)
    s = 2.5 #(g/kg)
    
    re = PMF_darcylaw_re(dh,dx,t,s,k,n)
    
    print("Re:",re)
    
    Result:
    Re: 0.07578544646918924