PMF_darcylaw_q(): Darcy law specific discharge

About:
Calculate the specific discharge according to the Darcy law.
\begin{equation} q = \frac{-K}{\mu} \times \frac{\delta h}{\delta x} = \frac{-K}{\mu} \times \frac{h_2 - h_1}{x_2 - x_1} \end{equation}
Where,

  • $q$, specific discharge - $\frac{m}{s}$;
  • $K$, hydraulic condutivity - $\frac{m}{s}$;
  • $\delta h$, variation of water level - $m$;
  • $\delta x$, distance between water levels, $m$;
  • $\mu$, dynamic viscosity » WATER_viscosity_dvisc(), $Pa \times s$.

  • Module: PorousMediaFlow
    Function: PMF_darcylaw_q(dh,dx,t,s,k)
    Parameters:
    • dh, variation of water level, oC;
    • dx, distance between water levels, g/kg;
    • t , water temperature, oC;
    • s, water salinity, g/kg;
    • k, intrinsic permeability, m2.
    Sample code:
    from PorousMediaFlow import *
    
    dh = -1.0 # (m)
    dx = 100 # (m)
    t = 10 #(.oC)
    s = 2.5 #(g/kg)
    k = 10**(-10) #(m2)
    
    q = PMF_darcylaw_q(dh,dx,t,s,k)
    
    print("q:",q,"m/s")
    
    Result:
    q: 0.005816690423732901 m/s