About:
Calculate the friction loss in a pipe, with uniform flow and turbulent regime according to the Gauckler-Manning-Strickler equation.
\begin{equation} Q = \frac{A \times R^{\frac{2}{3}} \times f^{\frac{1}{2}}}{n} \end{equation}
\begin{equation} f = \left(\frac{Q \times n}{A \times R^{\frac{2}{3}}} \right )^2 \end{equation}
where,
Q, flow - $m^3/s$
n, Manning friction factor;
A, section area, $m^2$;
R, hydraulic radius, $m$
Module: \begin{equation} Q = \frac{A \times R^{\frac{2}{3}} \times f^{\frac{1}{2}}}{n} \end{equation}
\begin{equation} f = \left(\frac{Q \times n}{A \times R^{\frac{2}{3}}} \right )^2 \end{equation}
where,
Q, flow - $m^3/s$
n, Manning friction factor;
A, section area, $m^2$;
R, hydraulic radius, $m$
UniformPressurizedFlow
Function:
UPF_gms_f(q,n,d)
Definition of variables:
q
, flow - m3/s;n
, Manning friction factor;d
, internal diameter - m.
Sample code:
from UniformPressurizedFlow import*
q= 1.0 #(m3/s)
n= 0.01
d= 0.75 #(m)
f = UPF_gms_f(q,n,d)
print("f:",f,"m/m")
Result:
f: 0.00477426829456 m/m