EQ_hydropower_p(): Power and net head of a hydro-power station

About:
Calculate power and head of a hydropower station.
©WETpython, 2015
\begin{equation} P = \gamma \times Q \times H \times \eta \end{equation}
\begin{equation} H = Z_r - Z_{e} - f \times ls - \sum \delta h  \end{equation}

 Where,


  • $P$, pump power, $W$
  • $H$, Net head of the hydro-power system, $m$;
  • $\gamma$, fluid specific weight, $\frac{N}{m^3}$;
  • $Q$,  flow, $\frac{m^3}{s}$
  • $h$, turbine head, $m$;
  • $Z_r$, intake reservoir water level, $m$
  • $Z_e$, turbine inlet level, $m$
  • $f \times ls$, head loss in the pipe, $m$
  • $\sum \delta h$, sum of minor losses in the pipe,$m$

  • Module: Equiment
    Function: EQ_hydropower_p(zres,ze,q,yturbine,t,s,d,n,sumk,lpipe)
    Definition of variables:
    • zres,upstream reservoir water level, m;
    • ze, turbine inlet level, m;
    • q , pumped flow, m3/s;
    • yturbine, turbine yield;
    • t , water temperature, oC;
    • s, water salinity, g/kg;
    • d, suction pipe diameter, m;
    • n, Manning coefficient, m;
    • sumk, sum of the minor losses K factor in suction pipe;
    • l, pipe length, m;
    Sample code:
    from Equipment import *
    
    zres = 100 #(m)
    ze = 25.0 #(m)
    q = 1.0 #(m3/s)
    yturbine = 0.8
    t = 15.0 #(.oC)
    s = 2.5 # (g/kg)
    d = 0.75 # (m)
    n = 0.01333 #manning friction factor
    sumk = 25.0 # sum of minor losses factors
    lpipe = 1000.0 # pipe lenght (m)
    
    (p,h) = EQ_hydropower_p(zres,ze,q,yturbine,t,s,d,n,sumk,lpipe)
    
    print("Turbine power:",p/1000.0,"kW,","Net head:",h,"m")
    
    Result:
    Turbine power: 471.10640623234366 kW, Net head: 59.985883198760206 m